

ДЬЯЧЕНКО Артем Александрович

РАЗРАБОТКА МАСС-СПЕКТРОМЕТРА ДЛЯ ИЗОТОПНОГО АНАЛИЗА ЛИТИЯ НА БАЗЕ ТЕХНОЛОГИИ «МС-ПЛАТФОРМА» С ИСТОЧНИКОМ ИОНОВ ЭРИАД

1.3.2. – Приборы и методы экспериментальной физики

АВТОРЕФЕРАТ

Диссертации на соискание ученой степени кандидата технических наук

Санкт-Петербург – 2022

Работа выполнена в Федеральном государственном бюджетном учреждении науки «Институт аналитического приборостроения Российской академии наук».

Научный руководитель:

Галль Николай Ростиславович, доктор физико-математических наук, ведущий научный сотрудник лаборатории экологической масс-спектрометрии Института аналитического приборостроения РАН.

Официальные оппоненты:

Ганеев Александр Ахатович, доктор физико-математических наук, профессор, руководитель группы спектрометрии ООО "Люмэкс", ведуший научный сотрудник института химии Санкт-Петербургского государственного университета (СПбГУ)

Якубович Ольга Валентиновна, кандидат геолого-минералогических наук, доцент кафедры геохимии института наук о Земле Санкт-Петербургского государственного университета (СПбГУ).

Ведущая организация: Федеральное государственное унитарное предприятие Экспериментальный завод научного приборостроения со специальным конструкторским бюро РАН (ФГУП ЭЗАН)

Защита состоится 30 января 2023 года в 14:30 часов на заседании диссертационного совета 24.1.029.01 на базе Института аналитического приборостроения (ИАП РАН) по адресу: 198095, г. Санкт-Петербург, ул. Ивана Черных, д.31-33, лит. А.

С диссертацией можно ознакомиться в научно-технической библиотеке ИАП РАН по тому же адресу и на сайте www.iairas.ru и www.iai.rssi.ru. Отзывы на диссертацию и автореферат направлять по адресу: 190103, г. Санкт-Петербург, ул. Рижский пр., д.26, ИАП РАН, а/я 207.

Автореферат разослан «__» _____ 2022 г.

Ученый секретарь диссертационного совета, Доктор физико-математических наук ИЗУ А.Л. Буляница

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень ее разработанности:

Литий нашел обширное применение в различных областях техники. В некоторых из них, таких как изотопная геология, медицина и атомная промышленность особую роль имеют отдельные изотопы лития. Отдельного внимания заслуживает применение солей лития как добавки к теплоносителю первого контура водо-водяных ядерных реакторов, наиболее распространённых из существующих на данный момент. О значимости применения литийсодержащих добавок в первый водяной контур реакторов типа ВВЭР (водо-водяной энергетический реактор) и PWR (pressurized water reactor, водяной реактор высокого давления) например, по TOMY, что существуют нормативные документы, регламентирующие содержание гидроксида лития в воде первого контура. Добавление гидроксида лития повышает стабильность водо-водяных ядерных реакторов, поскольку предотвращает коррозию конструктивных материалов реакторной установки.

К антикоррозионным присадкам предъявляется жесткое требование по изотопному составу. В них не должен присутствовать изотоп ⁶Li, поскольку он, в отличие от ⁷Li, является сильным поглотителем нейтронов. Поглощение нейтронов теплоносителем первого контура водо-водяных реакторов, особенно содержащимися в нем ядрами ⁶Li, приводит к образованию трития и загрязнению воды этим радиоактивным изотопом. Кроме того, присутствие изотопа ⁶Li — сильного поглотителя нейтронов — в реакторной зоне приводит к снижению эффективности работы реактора. Процесс обогащения солей лития тяжелым изотопом ⁷Li требует аналитического оборудования для осуществления технологического контроля. В настоящее время отсутствуют серийные специализированные приборы, которые могли бы использоваться для технологического контроля процесса обогащения лития изотопом ⁷Li.

В настоящее время основным способом определения изотопного состава является масс-спектрометрия. Однако коммерчески выпускаются универсальные масс-спектрометры, в которых задача изотопного анализа лития реализована без учета специфических свойств этого элемента. Для технологического применения желателен специализированный прибор, обеспечивающий необходимую точность анализа и высокую экспрессность в сочетании с невысокой ценой. Такой специализированный масс-спектрометр, предназначенный для определения изотопного состава проб лития, мог бы оказаться более простым и удобным решением, чем серийно производимые коммерческие приборы.

Масс-спектрометры — это сложные высоковакуумные приборы, требующие высокой точности изготовления, что обуславливает их высокую цену. Одной из наиболее значимых проблем при разработке, конструировании и изготовлении масс-спектрометров является соблюдение точности взаимного расположения элементов ионно-оптической схемы. Традиционно высоковакуумная часть прибора конструируется по фланцевой схеме. Каждый ионно-оптический элемент устанавливается относительно собственной базы, а эти базы сочленяются между собой за счет точности расположения фланцев. В то же время, точное расположение всех элементов ионно-оптической схемы относительно единой базы позволило бы существенно упростить и удешевить процесс изготовления и повысить аналитические параметры прибора. Повышение точности расположения элементов ионной оптики масс-спектрометра может быть достигнуто с помощью нового метода конструирования и изготовления ионно-оптических систем масс-спектрометра. О таком методе и будет идти речь в данной работе.

<u>**Целью</u>** настоящей работы являлась разработка масс-спектрометра, оптимизированного для изотопного анализа лития, использующего метод ионизации ЭРИАД, построенного на базе нового подхода к конструированию.</u>

Для этого потребовалось решить ряд задач:

• провести анализ текущих методов определения изотопного состава лития,

- сформулировать, исходя из этого анализа, основные требования к разрабатываемому масс-спектрометру,
- рассчитать масс-спектрометр, сконструировать его с применением нового подхода,
- разработать методику проведения изотопного анализа лития и провести исследовательские испытания изготовленного прибора с применением разработанной методики.

<u>Научная новизна</u> работы заключается в ряде примечательных результатов, полученных в ходе выполнения данной работы:

- 1. Впервые в масс-спектрометрическом изотопном анализе был использован метод ионизации ЭРИАД; в качестве анализируемого образца использовался литий. Применение метода ЭРИАД позволило резко повысить экспрессность выполнения анализов без потери точности в сравнении с общепринятым методом поверхностной термоионизации, и значительно уменьшить их стоимость.
- 2. Впервые разработан изотопный масс-спектрометр, построенный по технологии «МС-платформа», когда все значимые элементы ионно-оптической схемы, масс-анализатор, источник и приемник ионов, размещены на единой платформе в единой вакуумной камере.
- 3. Впервые в изотопном анализе использован масс-анализатор «подвешенный» под ускоряющее напряжение, что стало возможным благодаря применению технологии «МС-платформа». Это существенно повысило стабильность и надежность работы прибора по сравнению с традиционной схемой питания масс-анализатора.
- 4. Впервые в изотопном анализе лития использована двухколлекторная система для одновременного измерения ионных токов изотопов лития, что резко повышает точность измерения.
- 5. Показана возможность использования разработанного масс-спектрометра для измерения концентрации бериллия в жидких пробах с использованием лития в качестве внутреннего стандарта, позволившая измерять ее в динамическом диапазоне от 10^{-4} до 10^{-7} М.

Практическая значимость

Разработан, изготовлен и оттестирован специализированный масс-спектрометр МИ-20 в двух модификациях, обеспечивающий измерение изотопного отношения солей лития с точностью, востребованной атомной промышленностью (~0.1%), причем ли может быть в форме как электролита, так и быть захваченным краун эфирами, что важно при технологическом контроле процесса обогащения. Применение метода ЭРИАД для ионизации позволяет проводить анализ в очень сжатые сроки — в течение 15-20 минут, по сравнению с такими методами, как поверхностная ионизация. Создан прибор с чисто магнитным массанализатором. Такая конструкция позволила упростить и удешевить его создание по сравнению с масс-анализатором с двойной фокусировкой.

Показано, что данный масс-спектрометр может быть использован для определения концентраций бериллия в технологических растворах с применением лития в качестве внутреннего стандарта.

Положения, выносимые на защиту:

- 1. Разработанный масс-спектрометр МИ20 за счет комбинации метода ЭРИАД и технологии МС-платформа позволил проводить изотопный анализа лития с точностью 0.03%, причем время одного анализа, включая перезагрузку образца составило не более 20 минут.
- 2. Изотопный анализ лития методом ЭРИАД возможен из различных его химических форм, ка простых неорганических солей, так и при захвате лития краун-эфирами.
- 3. Показано, что эффективность атомизации лития не зависит от его начальной химической формы и совпадает для краун-эфира, хлорида и нитрата лития.

- 4. Показано, что возможность образования ионов бериллия при ионизации методом ЭРИАД зависит от его первоначальной химической формы и рН раствора; в частности нейтральный сульфат бериллия ионов не дает.
- 5. Впервые при ионизации методом ЭРИАД в масс-спектре наблюдались ионы атомарного углерода.
- 6. Показано, что эффективность регистрации ионов лития и бериллия близки и отличаются на величину менее 15%.

Личный вклад автора

Автор участвовал в постановке цели и задач исследования, а также в разработке как программного обеспечения, так и ионно-оптической системы масс-спектрометра МИ-20 LowMass-M. В частности, автором была спроектирован магнитный секторный масс-анализатор и ионная оптика источника ионов данного масс-спектрометра, а также двухканальный приемник ионов на базе дублета микроканальных пластин и платформа, на базе которой осуществлялась сборка и юстировка всех элементов ионно-оптической системы масс-спектрометра. Автором была разработана методика проведения измерения как изотопного отношения лития в стандарте и краун-эфирах, так и методика определения концентрации бериллия с применением лития в качестве внутреннего стандарта. Также серия экспериментов, посвященная проверке факта обнаружения в масс-спектре пика ионов атомарного углерода, была спланирована и проведена автором данной работы. Все экспериментальные результаты, представленные в диссертации, были получены и интерпретированы автором лично.

Степень достоверности и апробация результатов:

Полученные результаты работы докладывались на следующих конференциях:

- Третья международная конференция со школой молодых ученых «Физика наукам о жизни», 14-18 октября 2019.
- Девятый съезд ВМСО и VIII Всероссийская конференция с международным участием «Масс-спектрометрия и её прикладные проблемы», 14-18 октября 2019 г.
- Всероссийский симпозиум с международным участием «Физика и химия процессов и материалов: от идей к современной технике и технологии», 26-28 апреля 2021 г
- Всероссийская конференция «IV съезд аналитиков России» 25.09-01.10.2022, Москва

Публикации

Основное содержание диссертации опубликовано в 4 научных работах, как в зарубежных, так и отечественных изданиях, индексируемых Web of Science и Scopus и соответствующим требованиям ВАК.

Структура диссертации

Диссертация содержит 4 главы, 109 страниц, 34 рисунка, 1 таблицу, 13 формул, 45 литературных источников.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении затрагивается вопрос применения лития в атомной промышленности и ключевой роли соединений этого элемента для обеспечения стабильной работы водо-водяных ядерных реакторов. В этой части впервые озвучивается существующая на данный момент проблема: отсутствие коммерческих специализированных приборов, предназначенных для проведения изотопного анализа лития. Также во введении обоснована актуальность темы диссертации, сформулированы цель и задачи, показаны практическая значимость и научная новизна исследования, и изложены положения, выносимые на защиту.

Первая глава является обзорной и разделена на три параграфа.

Параграф 1.1 разделен на три подпараграфа, посвященных областям применения изотопных масс-спектрометров, а именно изотопной геологии, ядерной медицине и атомной промышленности. В подпараграфе 1.1.3. роль масс-спектрометрии в атомной промышленности подчеркивается в контексте задачи определения изотопного состава лития как элемента, обеспечивающего устойчивую работу энергетических ядерных реакторов.

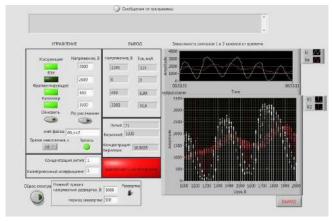
Параграф 1.2 разделен на три подпараграфа и содержит описание аналитических и эксплуатационных характеристик ряда масс-спектрометров, потенциально подходящих для решения задачи определения изотопного состава лития. Подпараграф 1.2.1 содержит в себе изотопных масс-спектрометров c источником ионов с поверхностной термоионизацией, а также дано краткое описание данного метода ионизации. В подпараграфе 1.2.2 рассматривается метод ионизации с индуктивно-связанной плазмой и приведен пример изотопного масс-спектрометра с данным источником ионов. В подпараграфе 1.2.3 аналогичным образом рассматривается электронный метод ионизации и изотопные приборы, использующие его. В конце первой главы приведен вывод об общих принципах построения изотопных масс-спектрометров: использование магнитного сектора масс-анализатора или анализатора с двойной фокусировкой и использовании многоканальной системе регистрации.

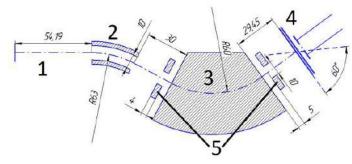
Вторая глава посвящена особенностям анализа изотопного состава лития и состоит из .. параграфов

В параграфе 2.1 говорится о влиянии фликкер-шума на измерения. Также в нем говорится, что ионы лития, сильно рассеиваются на остаточном газе из-за своей малой массы, чего можно избежать за счет сокращения протяженности траекторий ионов. Кроме того, ионы 6 Li и 7 Li имеют существенную — 15% — относительную разницу в массе, благодаря чему пространственное разделение пучков ионов этих изотопов в магнитном поле не требует большого радиуса магнита.

В параграфе 2.2 проанализированы причины, по которым перечисленные в первой главе наиболее распространенные методы ионизации не могут быть применены для технологического контроля изотопного состава лития на этапе обогащения его тяжелым изотопом.

В параграфе 2.3 дается описание метода ионизации ЭРИАД — электрораспыления с атомизацией в источнике. Данный метод ионизации представлен как перспективный, поскольку он позволяет работать с растворимыми пробами, не требует сложной и длительной подготовки пробы и позволяет производить анализ изотопного состава лития в режиме реального времени, что является необходимостью во время процесса изотопного обогащения лития.


Параграф 2.4 состоит из 2 подпараграфов. Подпараграф 2.4.1 посвящен вопросу выбора ионно-оптической схемы специализированного масс-спектрометра, предназначенного для изотопного анализа лития. В нем показано, что применение распространенных квадрупольного и времяпролетного масс-анализатора сопряжено с рядом принципиальных затруднений, в то время как магнитный масс-анализатор и анализатор с двойной фокусировкой могут быть использованы без всяких трудностей. Подпараграф 2.4.2 содержит в себе теоретические описания масс-анализаторов как с магнитным сектором, так и двухкаскадного, с двойной фокусировкой.


Выводом из второй главы является то, что наилучшим решением для изотопного анализа лития было бы применение статического масс-анализатора с источником ионов ЭРИАД. Более того, из приведенных выше пунктов 3 и 4 следует, что при разработке и конструировании масс-спектрометра для данной задачи следует использовать двухколлекторную регистрацию. При работе масс-анализатора в масс-спектрографическом режиме возможно одновременное детектирование ионов 6 Li $^+$ и 7 Li $^+$, что должно привести к дополнительному увеличению точности определения изотопного отношения лития в исследуемом образце за счет увеличения регистрируемых ионных токов и уменьшению влияния внешних факторов на соотношение между этими ионными токами.

Третья глава содержит описание специализированных экспериментальных массспектрометров МИ-20 LowMass и МИ-20 LowMass-M, разработанных для определения изотопного состава лития. Эта глава состоит из 4 параграфов. **Параграф 3.1** содержит общее описание этих макетных масс-спектрометров МИ-20 LowMass и МИ-20 LowMass-M: их корпуса, вакуумные камеры, системы откачки, управляющее ПО.

<u>Рис.1а. (слева)</u> Внешний вид прибора. Внутри сине-серого корпуса находятся системный блок компьютера, систему откачки и аналитический блок. На мониторе виден интерфейс Рис.1б. (снизу). управляющей программы. «УПРАВЛЕНИЕ» Интерфейс программы. В разделе устанавливаются напряжения и включаются блоки питания, а также включается запись. В разделе «ВЫВОД» показаны установленные напряжения и выходные токи источников питания, а также мгновенное значение сигнала с обоих каналов счетчика импульсов. Справа – два графика: значение сигнала каналов счетчика в зависимости от времени (верхний) и от ускоряющего напряжения (нижний) в режиме развертки ускоряющим напряжением.

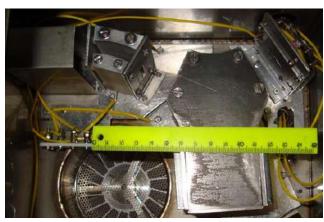


Рис. 2а. (сверху) Ионно оптическая схема масс-спектрометра МИ-20 LowMass. 1—входное плечо энергоанализатора. 2— электростатический энергоанализатор, 3—магнитный секторный анализатор, 4—МКП и два коллектора системы регистрации, 5—магнитные экраны. Штрихпунктирная линия—траектория ионов. Расстояния указаны в миллиметрах. Система регистрации расположена под углом ~60° к линии фокусов.

<u>Рис. 3б.(снизу)</u> Реализация ионнооптической схемы массспектрометра МИ-20 LowMass. Параграф 3.2 содержит описание разработанного газодинамического интерфейса для данной серии приборов с точки зрения его конструкции и газовой динамики (рис. 3). Параметры этого газодинамического интерфейса подобраны таким образом, чтобы он позволял эффективно осуществлять атомизацию солей лития и управлять движением полученных ионов в области между соплом и скиммером и осуществлять фрагментацию ионных кластеров за счет их соударения с остаточным газом.

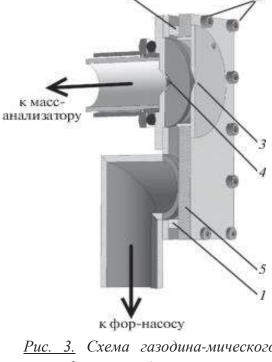
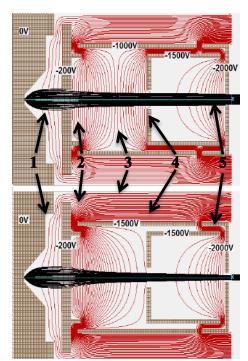
Параграф 3.3 посвящен разработке и изготовлению масс-спектрометра LowMass. Эта модель обладает иммерсионной линзой за скиммером, после которой ионы попадают в масс-анализатор геометрии типа Маттауха-Герцога, откуда ионы направляются двухканальную систему регистрации, вторичноизготовленную на основе электронного умножителя ВЭУ-7 И двух коллекторов.

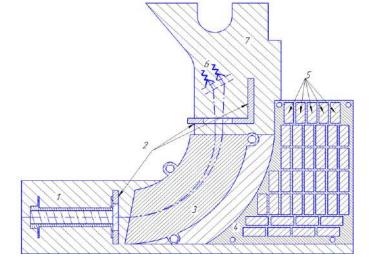
Параграф 3.4 посвящен модификации масс-спектрометра МИ-20 LowMass-М и состоит из 3 подпараграфов. В подпараграфе 3.4.1 приведена конструкция источника ионов для данной модификации прибора и результат ее моделирования. (Рис.4) Подпараграф 3.4.2 включает в себя описание масс-анализатора масс-спектрометра LowMass-М и МС-

платформы – элемента конструкции ионнооптической системы, относительно которой расположены все остальные элементы ионно-оптической системы (Рис.5).

Подпараграф

3.4.3 состоит из описания разработанного приемника изготовленного ионов, на основе двух МΚП коллекторной сборки, позволяющей работать, как режиме развертки ускоряющим напряжением, так и в спектрографическом режиме с одновременной регистрацией двух изотопов на раздельных коллекторах (Рис.6).


Рис. 3. Схема газодина-мического интерфейса, про-дольный разрез по средней линии. 1— уплотняющая прокладка; 2— элементы крепления для равномерного уплотнения; 3— сопло; 4— скиммер; 5— диэлектрическая пластина крепления сопла

Puc.4. Результаты моделирования ионного источника LowMass-M. 1 – скиммер интерфейса, 2 – вытягивающий электpod, 3, 4 — электроды транспортирующей темы, 5 – выходная шель ИИ, 6 - иилиндр входного плеча масс-анализатора. Траектории ионов показаны с разбросом по углам $\pm 45^{\circ}$ и по энергиям от 1 до 11 эВ

<u>Рис.5.</u> Схематичное изображение сборки магнита и МС-платформы. 1 — входное плечо масс-анализатора, 2 — магнитные экраны, 3 — полюсный наконечник, 4 — дюралевая кассета для постоянных магнитов, 5 — постоянные магниты, создающие поле в зазоре, 6 — приемник ионов, 7 — общая дюралюминиевая платформа. Штрихпунктирная линия — траектории ионов изотопов лития

<u>Рис.б.</u> Сборка ВЭУ на основе 2 МКП. Сетка находится под ускоряющим напряжением и электрически развяза-на с первой пластиной приемника, что позволяет создать однородное тянущее поле. Всего в сборке 5 электродов, одним из которых является сетка. На выходе ВЭУ — сборка коллекторов, позволяющая работать как в режиме развертки ускоряющим напряжением, так и в спектрографическом режиме.

В качестве **результатов** третьей главы приводится то, что был разработан и изготовлен масс-спектрометр MИ-20 LowMass и его модификация LowMass-M, предназначенные для проведения изотопного анализа лития использующие метод ионизации ЭРИАД, магнитный анализатор (с двойной фокусировкой LowMass и с одинарной LowMass-M), двухканальную систему регистрацию и построенные по технологии «МС-платформа».

Применение метода ионизации ЭРИАД позволит проводить анализ жидких проб, статический масс-анализатор и двухканальная система регистрации позволяет проводить регистрацию обоих изотопов в спектрографическом режиме с высокой точностью, технология «МС-платформа» позволила существенно снизить требования к точности юстировки при сборке обоих масс-спектрометров. Кроме того, протяженность траекторий ионов в данных масс-спектрометрах коротка (LowMass — 205 мм, LowMass-М — 195 мм, для сравнения протяженность траектории ионов в масс-спектрометрах МТИ-350Г — около 750 мм).

В четвертой главе приведены исследовательские испытания масс-спектрометра МИ-20 LowMass-M. Эта глава состоит из трех параграфов.

Параграф 4.1 посвящен изотопному анализу лития. Для определения изотопного состава лития было предложено использовать в качестве объекта исследования стандартный раствор хлорида лития с природным соотношением изотопов и краун-эфиры, включающие в состав литий и обладающие изотопно-избирательной сорбцией к нему. Приготавливались воднометанольные растворы с соотношением между водой и метанолом 1:5, содержащие концентрацию солей литиярастворы 1*10⁻⁴М. Затем 1 мл раствора распылялся при потенциале иглы 2800-3200 В, ток распыления при этом составлял 50-60 нА, скорость распыления составляла 5 мкл/с. Растворы краун-эфиров в хлороформе растворялись в изопропиловом спирте, затем — в водометанольном растворе до тех же молярных концентраций. Распыление

оставалось стабильным в течении длительного времени, но периодически возникали кратковременные нестабильности.

Для недопущения контаминации исследуемого образца, а именно взаимного загрязнения стандартного образца хлорида лития следами краун-эфиров и наоборот, были подготовлены три комплекта химической посуды и три отдельных сосуда для растворителя. Такое решение было принято для того, чтобы возможные следы лития не могли попасть из образца в стандарт через растворитель Также, для недопущения влияния «памяти» распылительного капилляра, то есть возможных следов солей лития, сорбирующихся на его стенках, был подготовлен аналогичный по составу растворитель, хранящийся отдельно и используемый для промывания распылительной системы. Полученная последовательность проведения измерений была такова:

- 1. Проводилось контрольное измерение состава распыляемого растворителя, набираемого из первого сосуда. На этом этапе требовалось добиться полного отсутствия лития в масс-спектре, а значит и следов солей лития в распылительном капилляре;
- 2. Проводилось измерения изотопного состава лабораторного стандарта, хлорида лития, при этом для приготовления раствора-стандарта использовался растворитель, хранящийся во втором сосуде для растворителя;
- 3. Вместо лабораторного стандарта ионизации ЭРИАД вновь подвергался чистый растворитель, набираемый из первого сосуда. Получаемый при таком распылении спектр снимался до тех пор, пока в нем не пропадут следы лития;
- 4. Проводилось распыление раствора краун-эфира, содержащего литий, и определение изотопного состава включенного в его состав лития. При приготовлении раствора использовался растворитель из третьего сосуда;
- 5. Снова проводилась промывка распылительной системы до полного исчезновения следов лития в масс-спектре, растворитель набирался из второго сосуда.

После этого пункты 2-5 многократно повторялись. Благодаря такой методике проведения измерений удалось добиться чистоты как образцов, так и стандарта, от взаимного загрязнения и искажения определяемого изотопного состава. Также она позволила избавиться от возможной памяти распылительной системы и ее вклада в измеряемый изотопный состав.

И соли лития, и краун эфиры хорошо фрагментировались в интерфейсе, давая на выходе атомарные ионы. На рис.6а представлены зависимости тока иона 7 Li от фрагментирующего напряжения ΔU для LiCl и для краун- эфира; видно что при ΔU > 300 В зависимость выходит на плато, что соответствует ожидаемым данным.

При измерениях, для каждой точки проводилось накопление сигнала в течении 1000 сек с записью 1 раз в секунду. При этом данные отличающие от средних по абсолютной величине более чем на 20% автоматически выбрасывались, т.к. соответствовали моментам нестабильного распыления. Обычно, число таких точек составляло 10-12%. На рис. 76 представлена типичная зависимость измеренных изотопных отношений в пробе и стандарте. На графике четко виден дрейф прибора, который хорошо аппроксимируется кусочно-ломанной линией. Время одного измерения составило 1000 с, время замены пробы и стандарта — 100с.

Относительная точность определения изотопного отношения для стандарта с учетом дрейфа прибора составила $\sim 0.03\%$. Для проб краун-эфиров, обозначенных N1 и N2 получены следующие данные:

N1;
$$\delta = (R_{st} - R_{7Li})/Rst * 1000 = -3.04 \pm 0.23^{\circ}/_{00}$$

Таким образом, видно что имеется статистически достоверное обеднение пробы изотопом $^7{\rm Li}$ на уровне $\sim 3^0/_{00}$

N2
$$\delta = (R_{st} - R_{7Li})/Rst * 1000 = 0.2 \pm 0.8^{\circ}/_{00}$$

Видно, что нет статистически значимой разницы со стандартом в пределах ошибки лучше, чем $1^0/_{00}$.

Вышесказанное показывает, что масс-спектрометрия ЭРИАД является очень удачным решением для изотопного анализа лития, обеспечивая высокую точность и быстроту смены пробы. Скорость смены пробы положительно сказывается на точности, поскольку позволяет. Можно ожидать, что метод ЭРИАД будет столь же эффективен и для измерения изотопных составов других элементов.

Значимость полученного результата состоит также в том, что процесс фрагментации в газодинамическом интерфейсе протекает одинаково эффективно как для хлорида, использованного как стандарт, так и для краун-эфиров, поскольку зависимость интенсивности пиков лития, полученных из растворов этих соединений, очень близки.

Возможность получения масс-спектрометрических пиков изотопов лития при применении метода ионизации ЭРИАД также имеет большую практическую значимость, поскольку краунэфиры обладают избирательной сорбцией к различным изотопам лития и применяются для его изотопного обогащения.

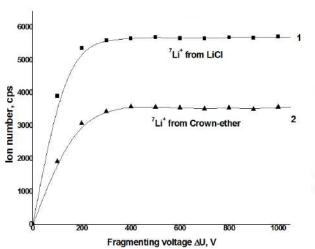


Рис. 7а. Зависимость интенсивности пиков лития при электрораспылении от фрагментирующего напряжения «соплоскиммер» для лития, находящегося в растворе в форме хлорида (1) и в составе краун-эфира(2). Совпадение насыщения в области 200 В говорит о полной фрагментации как хлорида, так и краунэфиров

<u>Рис. 76.</u> Результаты измерения изотопного состава лития, полученные при электрораспылении, для краун-эфиров (N1, N2), в сравнении со стандартом (St). Красные отрезки - -аппроксимация временного дрейфа прибора, полученная при анализе стандарта, необходима сравнения с результатами измерения изотопного отношения лития в краун-эфирах

В параграфе 4.2 описаны экспериментальные испытания масс-спектрометра МИ-20, в которых в качестве исследуемых образцов использовались соли бериллия. Бериллий является элементом, находящим широкое применение в самых разных областях промышленности: в металлургии, в авиационно-космической технике и в приборостроении, в атомной промышленности.

Из-за высокой токсичности бериллия, в мировой и в Российской службе экологического надзора установлены достаточно жесткие нормы его нахождения в окружающей среде и, в частности, в воздухе рабочих помещений бериллиевых комбинатов.

Традиционная пробоподготовка при анализе бериллия основана на вскрытии проб с помощью серной, реже — фтористоводородной кислоты, и она используется как для технологических, так и для экологических проб.

Пробы приготавливались путем растворения изомолярных количеств солей бериллия и лития в бидистиллированной воде, последующего разбавления водой до концентрации 10^{-3} М; а затем водно-метанольной (объемное отношение воды к метанолу 1:4) смесью до концентрации 10^{-4} М. После этого проба набирались в одноразовые шприцы объемом 1 мл которые устанавливались в шприцевой насос для подачи в распылительный капилляр. Скорость подачи составляла 2 мкл/мин, ток электрораспыления составлял 80-100 нА, напряжение 2400-2600 В. Использовались нитрат лития и соли бериллия с различными анионами.

Для недопущения попадания следов бериллия в стандарт, в роли которого выступал хлорид лития, использовалась методика проведения измерений, описанная в предыдущем параграфе: три отдельных сосуда с растворителем, последовательная промывка распылительной системы между экспериментами по ионизации и масс-спектрометрическому обнаружению лития и бериллия, многократное повторение экспериментов.

Масс-спектр смеси хлоридов Li и Ве представлен на рисунке 7. Видно, что пики близки по амплитуде, свидетельствуя, в соответствие с более ранними данными, что абсолютные вероятности ионизации и сбора для разных элементов в методе ЭРИАД близки.

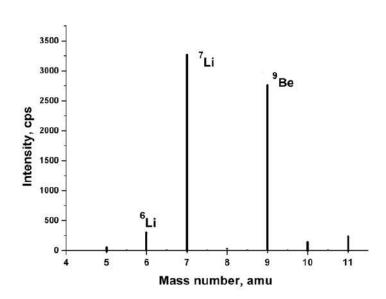
Эксперименты показали, что зависимость интенсивностей для лития и бериллия от фрагментирующего напряжения ΔU близки. При $\Delta U=0$ не наблюдалось ионного тока ни для одного из элементов, затем он возникает и при приближении к $\Delta U=150B$ выходит на некоторые постоянные значения, причем интенсивность тока для бериллия на 15-20% превышает величину тока ионов лития для изомолярных концентраций. При дальнейшем увеличении ΔU интенсивность обоих пиков практически не меняются во всем диапазоне изменения фрагментирующего напряжения вплоть до 1000 B.

Предположительно полученные результаты можно объяснить электрогазодинамическими процессами, протекающими между соплом и скиммером. Отсутствие элементарных пиков при $\Delta U = 0$ В означает, что ионы обоих элементов входят на границу раздела в молекулярной или кластерной форме. Фрагментация молекулярных ионов обоих элементов начинается при относительно низких напряжениях: это соответствует относительно слабым связям в исходных формах этих ионов, которые, весьма вероятно, ограничиваются только их гидратацией. Ситуация существенно меняется для сульфата бериллия. В качестве образца использовали стандартный раствор сульфата бериллия производства «Экоаналитика». Это решение используется в качестве стандарта для атомно-эмиссионной масс-спектрометрии и масс-спектрометрии с индуктивно-связанной плазмой. Его последовательно разбавляли бидистиллированной водой и водно-метанольной смесью, как описано выше, до концентрации 10^{-4} моль/л. Однако при измерениях увеличение ΔU до 800 В не привело к появлению в спектре даже следов бериллия, наблюдались только пики лития.

Первоначально было решено, что напряжения фрагментации, подаваемого между соплом и скиммером, недостаточно для атомизации бериллия из раствора его сульфата (в опытах с нитратом бериллия для атомизации было достаточно 200 В). После принятия мер по предотвращению пробоя и зажигания слаботочного тлеющего разряда в интерфейсе, возможное фрагментирующее напряжение в нем было увеличено до 1500 В. Однако пиков бериллия в спектре не наблюдалось даже при максимальном допустимом напряжении фрагментации.

Это позволило сделать вывод, что сульфат бериллия не может быть использован в качестве анализируемого образца при применении метода ионизации ЭРИАД, хотя сульфаты многих других элементов (Na, K, Fe, Cu и др.) дают хороший сигнал. Полученный эффект мы связываем с особенностями растворения сульфата бериллия. Известно, что бериллий в сульфатных растворах склонен к образованию стабильного основного сульфата, при этом сильно гидролизуется. Гидролиз бериллия катионом происходит по уравнению:

$$2BeSO_4+2H_2O \leftrightarrow [Be(OH)]_2SO_4+H_2SO_4$$


Связь между бериллием и ионом сульфата настолько прочна, что сохраняется даже в сильнощелочной среде. Так, для превращения основного сульфата бериллия в гидроксид

требуется почти трехкратный избыток щелочи. Кроме того, известно, что присутствие сульфатиона приводит к тому, что бериллий даже в сильно разбавленных растворах образует многоядерные полимерные и коллоидные частицы. По-видимому, этим и объясняется невозможность обнаружения бериллия ни в одной из его химических форм в положительно заряженных каплях при электрораспылении таких растворов бериллия при любом значении фрагментирующего напряжения.

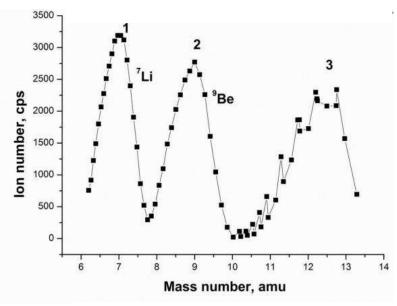
Была предпринята попытка перевести сульфат бериллия в форму, способную давать массспектрометрический сигнал при ионизации ЭРИАД. Для этого было решено использовать в качестве исследуемого образца раствор хлорида бериллия, для чего была проведена реакция ионного обмена между хлоридом бария и сульфатом бериллия:

$$BeSO_4+BaCl_2 \rightarrow BaSO_4 \downarrow +BeCl_2$$

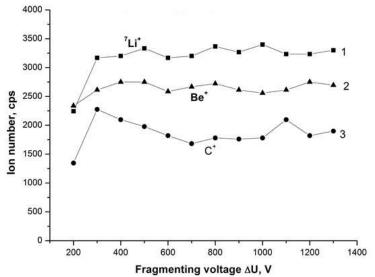
Эта реакция была выбрана, поскольку ее результатом является образование хлорида бериллия, остающегося в растворе, и нерастворимого сульфата бария. Изомолярные растворы

<u>Puc.8.</u> Масс-спектр, включающий в себя пики ионов лития (обоих изотопов) и бериллия

хлорида бария и сульфата бериллия были перемешаны, была проведена реакция, в ходе которой образовался осалок. Реакшионная смесь пропущена через фильтровальную бумагу, нерастворимый осадок сульфата бария был удален из смеси. Полученный раствор прошел тот же процесс пробоподготовки, состоящий из разбавления бидистиллированной водой, а затем - водно-метанольной смесью. После пробоподготовки была проведена очередная экспериментов по электрораспылению анализируемого раствора обнаружению пика ионов бериллия, образовавшихся при распылении и фрагментации. Однако в полученном таким образом растворе хлорида бериллия не удалось обнаружить масс-


спектрометрический пик бериллия, несмотря на широкий диапазон приложенных фрагментирующих напряжений между соплом и скиммером. Это можно объяснить образованием сульфата бария, захватом им полимерных и коллоидных продуктов гидролиза соли бериллия и удалением бериллия из раствора вместе с осадком.

Был подготовлен раствор бериллия путем непосредственного растворения металлического бериллия в соляной кислоте. Навеска 9 мг металлического бериллия была растворена в 10 мл соляной кислоты с концентрацией 0.1 М. Полученный раствор прошел ту же пробоподготовку, что и все остальные исследуемые растворы. После обнаружения в масс-спектре пика бериллия, был подготовлен изомолярный раствор, включающий в себя хлориды бериллия и лития. В результате проведения серии экспериментов с данным раствором был получен спектр, представленный на рис. 8. В изомолярном растворе интенсивности масс-спектрометрических пиков лития и бериллия оказались близки.


Таким образом, стандартный раствор сульфата бериллия, широко применяемый в спектральных методах анализа с индуктивно-связанной плазмой, оказывается неприменимым в масс-спектрометрии ЭРИАД из-за особенностей его гидролиза. Аналогичная ситуация ожидается и с алюминием, который по своим химическим свойствам близок к бериллию. Повидимому, в качестве стандартных растворов для масс-спектрометрии ЭРИАД следует

использовать только нитраты или хлориды, которые дают пики всех элементов, используемых до настоящего времени методом ЭРИАД. В то же время, хлориды бериллия и лития позволяют получить в масс-спектре пики ионов этих элементов, причем эффективности ионизации методом ЭРИАД этих элементов близки.

В параграфе 4.3 описаны условия наблюдения масс-спектрометрических пиков 12 C⁺ в результате проведения экспериментов. До сих пор в методе ЭРИАД не наблюдалось ионов, отличных от элементных катионов пробы, за исключением ионов H_2O^+ и $H_2O^-H^+$. Между тем модель ионообразования при атмосферной ионизации показывает возможность появления таких ионов и в ЭРИАД. В качестве проб использовались изомолярные количества нитратов лития и бериллия, они получались путем растворения солей в бидистиллированной воде, последующего разбавления водой до концентрации $5 \cdot 10^{-4}$ M, а затем разбавления метанолом в

Puc. 9a. Масс-спектр раствора, содержащего катионы лития бериллия, полученный на массспектрометре МИ-20 LowMass" Использованы нитраты лития бериллия в изомолярной концентрации 1 $\cdot 10^{-4} \ M. \ 1$ — пик ионов $^{7}Li^{+}$, 2 — пик ионов ${}^{9}Be^{+}$, 3 — пик ионов C^{+}

<u>Рис. 96.</u> Зависимости интенсивности сигнала ионов Li^+ (1), Be^+ (2) и C^+ (3) от фрагментирующего напряжения. Использованы нитраты лития и бериллия в изомолярной концентрации $1 \cdot 10^{-4}$ М.

пропорции 1: 5. Скорость подачи составляла 5 мкл/минуту, напряжение распыления 2400–2600 V, ток 50–60 нА, фрагментирующее напряжение изменялось в интервале от 0 до 1200 В. Фрагмент масс-спектра, полученный при приложении ускоряющего напряжения 1200 В, представлен на рис. 9а. На нем видны пики ⁷Li и Ве; они близки по амплитуде, что свидетельствует о том, что абсолютные вероятности ионизации и сбора для разных элементов в методе ЭРИАД различаются незначительно. В то же время в области 11–14 а.т.и. наблюдается широкий интенсивный пик, который не может быть отнесен ни к одному из элементов пробы.

Центр пика соответствует массовому числу 12 а.т.и. В более ранних работах в этой области масс-спектра никаких пиков не наблюдалось. По своему расположению в масс-спектре этот пик может соответствовать только иону C^+ . В самом деле, атом C имеет потенциал ионизации 10.8 эВ, который ниже потенциалов ионизации всех молекул, входящих в состав спутного газаносителя: азота, кислорода, аргона, паров воды и метанола, CO_2 . В случае образования в столкновительных процессах такой атом окажется в ионизованном состоянии, так как ему некому передать свой заряд.

Потенциально возможным кандидатом на массовое число 12 а.т.и. является еще двухзарядный ион Mg^{2+} , основной изотоп которого имеет атомную массу 24 а.m.u. Известно, что для ряда металлов, а именно Ca, Ba, Sr и некоторых редкоземельных металлов, масс-спектр ЭРИАД включал кроме однозарядного еще и двухзарядные ионы, видимо образующиеся в интерфейсе в результате вторичных процессов. Механизм их "выживания" состоит в том, что второй потенциал ионизации этих элементов ниже, чем первый потенциал ионизации воды наиболее легко ионизуемого компонента атмосферного газа. Таким образом, двухзарядные ионы этих элементов не перезаряжаются при столкновениях в интерфейсе и попадают в массанализатор. Однако для магния второй потенциал ионизации, 15.0 эВ, существенно выше, чем потенциалы ионизации всех компонентов газа. Действительно, в известных нам работах по ЭРИАД ион Mg^{2+} никогда не наблюдался. Тем не менее для исключения этой возможности мы распылили пробы, содержащие кроме Li и Ве также Na и Mg (оба в виде нитратов). В массспектре при этом наблюдаются ионы Na⁺ и Mg⁺, но оказалось, что интенсивность пика при 12 а.т.и. никак не зависит от концентрации магния, и, видимо, магний не является причиной возникновения этого пика. Ион С+ способен возникнуть в столкновительных процессах за счет распада молекулярного иона метанола, скорее всего образующегося в области атмосферного давления. Известно, что основной канал распада иона метанола — отщепление метильного радикала, который сохраняет заряд и подвергается дальнейшей фрагментации до атомного иона С⁺. Зависимости интенсивностей пиков Li⁺ и Be⁺, а также пика атомного углерода от фрагментирующего напряжения представлены на рис. 9б. При отсутствии фрагментирующего напряжения нет ни одного пика. Однако уже при значениях потенциала порядка 200 вольт появляются пики Li⁺, Be⁺, а также пик C⁺, которые в дальнейшем меняются слабо, как это ранее и наблюдалось для Li и Be.

Данные для углерода хорошо коррелирует с тем фактом, что ионы метанола и других компонентов растворителя удавалось наблюдать лишь при почти нулевых фрагментирующих напряжениях; при больших они полностью разваливались. Пик при массовом числе 12 существенно уширен по сравнению с пиками катионов; на нем наблюдаются шумы и выбросы, не характерные для других частей масс-спектра. Это можно объяснить его происхождением вследствие распада метастабильных ионов – осколков метанола, которые вносятся в область высокого вакуума потоком газа-носителя из скиммера и окончательно распадаются уже на пути к масс-анализатору. То, что ранее таких ионов наблюдать не удавалось, можно связать с различиями в газодинамических свойствах интерфейсов и в режимах вытягивания ионов для МИ-20 и для более ранних масс-спектрометров: интерфейс в МИ-20 газодинамически более "длинный"; вытягивание ионов осуществляется низким напряжением во избежание разряда на выходе скиммера. Наоборот, в масс-спектрометрах, использованных в работах, применялись газодинамически "короткие" интерфейсы, а вытягивание ионов производилось приложением значительного (достигающего 30%) ускоряющего напряжения прямо за скимммером, т. е. в масс-спектрометре МИ-20 имеется область траектории, где возможен распад метастабильных ионов — осколков метанола с образованием ионов C^+ , которые затем будут зарегистрированы. В используемых ранее интерфейсах ионы С+, скорее всего, образовывались в области приложения высоких тянущих электрических полей и не регистрировались, а просто создавали фон. Для проверки этой гипотезы на фокусирующий электрод линзы источника ионов было подано значительное тянущее напряжение (300 В). При этом в спектре оставались только ионы, соответствующие Li, Be, Na и Mg, ионов в области масс-спектра 12–14 а.т.и. не наблюдалось.

После модификации масс-спектрометра и изменения его ионно-оптической схемы данная серия экспериментов было проведена повторно. В результате этой серии экспериментов в масс-спектре снова был обнаружен пик на 12 массе. Таким образом, ионы, представленные в масс-спектре на рис. 8а, скорее всего, действительно являются продуктами метастабильного распада, образующимися в области движения пучка в скиммере или сразу за ним. Впервые в электрораспылительном источнике наблюдались пики с массовыми числами 12 а.е.м., которые следует отнести к иону С+, образующемуся вследствие атомизации молекул растворителя (метанола) и ионизации фрагментов за счет перезарядки в газовой фазе с их последующим метастабильным распадом. Эффект открывает пути нового применения метода ЭРИАД для получения ионов элементов, способных "выживать" в потоке спутного газа, но не являющихся катионами в растворах.

Выводами из данной главы является ряд тезисов:

- Масс-спектрометрия ЭРИАД может применяться для изотопного анализа даже в случае сложных исходных соединений. Хотя здесь и есть исключения (пример сульфат бериллия), метод ЭРИАД позволяет проводить атомизацию и определение изотопного состава, например, краун-эфиров, потенциально обладающих изотопной избирательностью при образовании солей лития. Дальнейшее изучение возможностей масс-спектрометрии ЭРИАД обозначает новый круг задач, решение которых позволит составить более полную модель образования ионов при электрораспылении.
- Также, исходя из того, что сульфат бериллия не дает при распылении положительно заряженного иона в спектре, можно заключить, что ионы, получаемые при электрораспылении, образуются в самом растворе, после чего с заряженными каплями вырываются из капилляра и попадают в газодинамический интерфейс. В случае же, если образующийся в результате диссоциации анализируемого вещества ион оказывается отрицательным, либо же диссоциация в растворе не происходит, исследуемое вещество не поддается анализу. Решением, в таком случае, может быть смещение химического равновесия в растворе таким образом, чтобы анализируемое вещество, по возможности, не переходило в форму электроотрицательного иона, либо же создавать условия для диссоциации интересующих молекул.
- Газодинамический интерфейс «бутербродного» типа предложенной конструкции показал возможность использования ряда экспериментальных техник, существенно расширяющих арсенал возможностей исследователя. Возможность образования в интерфейсе такой конструкции ионов C^+ позволяет расширить представления о процессе фрагментации в условиях газодинамического интерфейса

Общие результаты и выводы из диссертационной работы

Проведен обзор литературных данных, проанализирована специфика использования лития в современной атомной промышленности. Показано, что для обеспечения стабильности ВВЭР требуется изотопно чистый ⁷Li и необходимо создание измерительных средств для определения его изотопной чистоты в целях аттестации и обогащения На основании этого анализа были сформулированы основные факторы изотопного анализа лития исходя из его физикохимических свойств:

- Наличие двух изотопов с большой относительной разницей в массах,
- Значительная эффективность рассеяния ионов лития на остаточном газе вследствие их низкой массы.

Также были сформулированы основные требования к специализированному масс-спектрометру для изотопного анализа лития:

- Использование магнитного секторного масс-анализатора с коротким ионно-оптическим трактом и одновременной двухколлекторной регистрацией,
- Ионизация пробы методом ЭРИАД, обеспечивающим высокую экспрессность анализа, возможность работы с литием в различных химических формах и достаточную для анализа чувствительность

• Впервые для изотопного МС использована технология «МС-платформа», состоящая в расположении всех элементов всех элементов ИОС прибора: ИИ, МА и приемника на единой платформе в единой вакуумной камере. Технология МС платформа позволила резко упростить изготовление и юстировку прибора.

Разработан, рассчитан и изготовлен масс-спектрометр МИ-20 для определения изотопной доли 7 Li в пробе. В состав прибора входят:

- «Длинный» газодинамический интерфейс типа Канторовица-Грея для транспортировки и атомизации ионов лития (метод ЭРИАД);
- Ионно-оптическая часть источника ионов на базе транспортирующей системы с иммерсионной линзой;
- Масс-анализатор с двойной фокусировкой типа Маттауха-Герцога, «подвешенный» под ускоряющее напряжение на постоянном диспергирующем магните;
- Система одновременной регистрации ионов ⁶Li и ли⁷Li, состоящая из разделительной сетки, ВЭУ-7, двух коллекторов и двухканального счетчика импульсов, а также вторично-электронный умножитель, состоящий из двух микроканальных пластин, и трехколлекторной сборкой, позволяющей работать как в спектрографическом режиме, так и в режиме развертки ускоряющим напряжением;

Масс-спектрометр полностью автоматизирован, включая управление блоками питания, регистрацию сигнала, представление результатов в виде масс-спектра или таблицы.

Разработан, рассчитан, спроектирован и изготовлен масс-спектрометр MИ-20 LowMass-M, использующий, в отличие от предыдущей модификации, чисто магнитный 90-градусный массанализатор и систему регистрации на двух ВЭУ-6 или сборку из двух микроканальных пластин с тремя коллекторами, позволяющими работать как в спектрографическом режиме, так и в режиме развертки ускоряющим напряжением.

Экспериментально показано, что точность измерения доли изотопа 7 Li в пробе составляет 0.3%.

Показано, что при ионизации методом ЭРИАД литий образует атомарные ионы, когда он присутствует в пробе как в виде электролита (хлорид лития, нитрат лития), так и в виде сложного, водонерастворимого краун-эфира. Практическая значимость этого результата состоит в том, что данный класс соединений обладает изотопной чувствительностью при сорбции лития и применяется в технологии изотопного обогащения этого элемента. Данная работа показывает, что масс-спектрометрия с методом ионизации ЭРИАД может быть использована для осуществления технологического контроля процесса изотопного обогащения лития.

Показано, что на масс-спектрометре МИ-20 возможно измерение концентрации бериллия в растворе, причем пик ⁷Li используется как внутренний стандарт. Эффективность регистрации ионов лития и бериллия отличается на величину менее 15%. Показано, что возможность образования ионов бериллия в методе ЭРИАД существенно зависит от первоначальной его формы в растворе, в частности, такие ионы не получаются из общепринятых стандартов сульфата бериллия.

В интерфейсе МИ-20 впервые в методе ЭРИАД наблюдались атомарные ионы углерода, происходящие, предположительно, из фрагментов метанола. Обнаружение этих фрагментарных ионов позволяет составить более полное представление о процессах, проходящих в газодинамическом интерфейсе.

<u>Основные публикации по теме диссертации:</u> Статьи:

1. А.А. Дьяченко, Н.М. Блашенков, Н.С. Самсонова, Л.Н. Галль, А.А. Семенов, А.В. Лизунов, Н.Р. Галль, «Масс-спектрометрическое наблюдение иона C^+ при электрораспылении с атомизацией в источнике», Письма в Журнал технической физики. 45. 52. 10.21883/PJTF.2019.18.48240.17899

- (Переводная версия: A.A. D'yachenko, N.M. Blashenkov, N.S. Samsonova, L.N. Gall, A.A. Semenov, A.V. Lizunov, N.R. Gall, «Mass-Spectrometric Observation of C+ Ions during Electrospray with In-Source Atomization», Technical Physics Letters, 2019, Vol. 45, No. 9, pp. 955–957. DOI: 10.1134/S1063785019090220)
- 2. Н.С. Самсонова, Н.М. Блашенков, А.А. Дьяченко, А.А. Семёнов, А.В. Лизунов, Н.Р. Галль, «Газодинамический интерфейс типа "сэндвич" для измерения элементного состава пробы методом ЭРИАД (электроспрей с атомизацией в источнике)», Приборы и техника эксперимента. 65-70. DOI: 10.1134/S0032816219050252.
- 3. Дьяченко А.А., Блашенков Н.М., Самсонова Н.С., Галль Л.Н., Семенов А.А., Лизунов А.В., Галль Н.Р., Беляева О.А. Особенности регистрации аналитического сигнала бериллия методом масс-спектрометрии ЭРИАД при различных способах пробоподготовки. Заводская лаборатория. Диагностика материалов. 2020; Т.86, №7, С.7-11. DOI: 10.26896/1028-6861-2020-86-7-7-11
- (Переводная версия: A. A. Dyachenko, N. M. Blashenkov, N. S. Samsonova, L. N. Gall, A. A. Semenov, A. V. Lizunov, N. R. Gall, and O. A. Belyaeva, «Beryllium Analytical Signal using ERIAD Mass-Spectrometry for Various Sample Preparation Methods», Inorganic Materials, 2021, Vol. 57, No. 14, pp. 27–30, DOI: 10.1134/S0020168521140041)
- 4. Дьяченко А.А., Блашенков Н.М., Бердников А.С., Галль Л.Н., Самсонова Н.С., Семенов А.А., Галль Н.Р. Специализированный масс-спектрометр для определения изотопного состава лития методом ЭРИАД (электрораспыление с атомизацией в источнике ионов). Письма в ЖТФ, 2022, Т. 48, №13, С. 3-6. DOI: 10.21883/PJTF.2022.13.52734.18919

Доклады и материалы конференций

- 1. А.А. Дьяченко, Н.М. Блашенков, Н.Р. Галль, «Масс-спектрометрическая регистрация ионов бериллия методом ЭРИАД», стендовый, Сборник трудов: Тезисы докладов Третьей международной конференции со школой молодых ученых «Физика наукам о жизни». СПб.: ФТИ им. А.Ф. Иоффе, 2019. С 167
- 2. Н.М. Блашенков, Н.С. Самсонова, А.С. Антонов, И.А. Громов, А.А. Дьяченко, Л.Н. Галль, А.А. Семенов, А.В. Лизунов, О.А. Беляева, Н.Р. Галль «Специализированный малогабаритный масс-спектрометр для определения следовых концентраций бериллия», стендовый, Сборник трудов: IX съезд ВМСО, Издатель «Всероссийское масс-спектрометрическое общество», Москва, 14-18 октября 2019 года. С. 48
- 3. А.А. Дьяченко, Н.М. Блашенков, Н.С. Самсонова, Л.Н. Галль, А.А. Семенов, А.В. Лизунов, Н.Р. Галль, «Наблюдение иона С+ при электрораспылении с атомизацией в источнике», стендовый, Сборник трудов: IX съезд ВМСО, Издатель «Всероссийское масс-спектрометрическое общество», Москва, 14-18 октября 2019 года. С. 47
- 4. Н.С. Самсонова, А.А. Дьяченко, А.А. Семенов, А.В. Лизунов, Л.Н. Галль, Н.Р. Галль, «Масс-спектрометрия ЭРИАД как метод измерения изотопных отношений химических элементов», устный, Сборник трудов: ІХ съезд ВМСО, Издатель «Всероссийское масс-спектрометрическое общество», Москва, 14-18 октября 2019 года. С. 40
- 5. А.А. Дьяченко, Н.М. Блашенков, А.А. Семенов, Н.Р. Галль, «Масс-спектрометрическое определение изотопного состава лития методом ЭРИАД», Всероссийский симпозиум с международным участием «Физика и химия процессов и материалов: от идей к современной технике и технологии», устный, 26-28 апреля 2021, Санкт-Петербург. С 135-138
- 6. А.А. Дьяченко, Л.Н. Галль, Н.М. Блашенков, Н.Р. Галль, «Использование метода ЭРИАД (электроспрей с атомизацией в источнике) для изотопного анализа», IV Съезд аналитиков России, 26-30 сентября 2022 г., Москва. С. 278
- 7. И.А. Громов, Н.М. Блашенков, А.А. Дьяченко, Л.Н. Галль, Н.Р. Галль, ««МС-платформа» современная технология построения статических изотопных масс-спектрометров» IV Съезд аналитиков России, 26-30 сентября 2022 г., Москва. С.334